

MATERIALS & SAFETY - R&D

TR 32890

page 1 of 18

FORM C TYPE TEST VERIFICATION REPORT

All Micro-generators connected to the **DNO Distribution Network** shall be **Fully Type Tested**. This form is the **Manufacturer**'s declaration of compliance with the requirements of G98.

This form should be used when making a Type Test submission to the Energy Networks Association (ENA). Type Test Register.

If the **Micro-generator** is **Fully Type Tested** and already registered with the ENA **Type Test Register**, the **Installation Document** should include the **Manufacturer**'s Reference Number (the system reference), and this form does not need to be submitted.

Manufacturer's reference number		Fronius Symo Advanced 10.0-3-M					
Micro-gen	erator technol	ogy	transformerless				
Manufacturer name		Froni	us International	GmbH			
Address				ter Fronius Str Wels-Thalheim,	•		
Tel	+43-7242-241	-0		Fax	+43-7242-241-224		
E:mail	pv @fronius.c	om		Web site	www.fronius.com		
			Connection Option				
Registered	d Capacity,		kW single phase, single, split or three phase system				
	ate sheet if	10,0	kW three phase				
connection	option.		kW two phases in three phase system				
-			kW two phases split phase system				
Energy storage capacity for Electricity Storage devices			kWh				
Manufactu	rer Type Test	declaration L certif	v that a	all products sur	oplied by the company with the above		

Manufacturer Type Test declaration. - I certify that all products supplied by the company with the above **Fully Type Tested** reference number will be manufactured and tested to ensure that they perform as stated in this document, prior to shipment to site and that no site modifications are required to ensure that the product meets all the requirements of EREC G98.

Signed	FRONUS/INTERNATIONAL GMBH Günter Frohros Str. 1, 4600 Welf Adainerm Tel: +43/(0) 72 42/(341-0, Fax) 47 8 25	On behalf of	Fronius International GmbH
	Guntar Fronting Str. (A) 4000 Well-Abarhelm Tel: +43 / (0) 72 42 / 341-0, Fax: 47 8 25		

Note that testing can be done by the **Manufacturer** of an individual component or by an external test house.

Where parts of the testing are carried out by persons or organisations other than the **Manufacturer** then that person or organisation shall keep copies of all test records and results supplied to them to verify that the testing has been carried out by people with sufficient technical competency to carry out the tests.

MATERIALS & SAFETY - R&D

TR 32890

page 2 of 18

Backup: Symo Advanced

Operating Range: This test should be carried out as specified in A.1.2.10.						
Pass or failure of the test should be indicated in the fields below (right hand side), for example with the statement "Pass", "No disconnection occurs", etc. Graphical evidence is preferred.						
Test 1	No disconnection occurs					
Voltage = 85% of nominal (195.5 V)						
Frequency = 47.0 Hz						
Power factor = 1						
Period of test 20 seconds						
Test 2	No disconnection occurs					
Voltage = 85% of nominal (195.5 V)						
Frequency = 47.5 Hz						
Power factor = 1						
Period of test 90 minutes						
Test 3	No disconnection occurs					
Voltage = 110% of nominal (253 V).						
Frequency = 51.5 Hz						
Power factor = 1						
Period of test 90 minutes						
Test 4	No disconnection occurs					
Voltage = 110% of nominal (253 V).						
Frequency = 52.0 Hz						
Power factor = 1						
Period of test 15 minutes						
Test 5	No disconnection occurs					
Voltage = 100% of nominal (230 V).						
Frequency = 50.0 Hz						

Power factor = 1
Period of test 90 minutes

Test 6 RoCoF withstand

Confirm that the Micro-Generating Plant is capable of staying connected to the Distribution Network and operate at rates of change of frequency up to 1 Hzs⁻¹ as measured over a periode of 500ms.

MATERIALS & SAFETY - R&D

TR 32890

page 4 of 18

Power Quality – Harmonics: These tests should be carried out as specified in BS EN 61000-3-2. The chosen test should be undertaken with a fixed source of energy at two power levels a) between 45 and 55% and b) at 100% of **Registered Capacity**. The test requirements are specified in Annex A1 A.1.3.1 (**Inverter** connected) or Annex A2 A.2.3.1 (Synchronous).

Micro-generator tested to BS EN 61000-3-2 Phase 1						
Micro-generator rating per phase (rpp)			3,33	kW		
Harmonic	Harmonic At 45-55% of Registered Capacity			Registered pacity		
	Measured Value MV in Amps		Measured Value MV in Amps		Limit in BS EN 61000- 3-2 in Amps	Higher limit for odd harmonics 21 and above
2	0,010		0,020		1.080	
3	0,060		0,060		2.300	
4	0,010		0,010		0.430	
5	0,060		0,060		1.140	
6	0,000		0,000		0.300	
7	0,060		0,060		0.770	
8	0,000		0,000		0.230	
9	0,050		0,050		0.400	
10	0,000		0,000		0.184	
11	0,060		0,040		0.330	
12	0,000		0,000		0.153	
13	0,030		0,060		0.210	
14	0,010		0,010		0.131	
15	0,050		0,060		0.150	
16	0,010		0,010		0.115	
17	0,040		0,070		0.132	
18	0,010		0,010		0.102	
19	0,010		0,030		0.118	
20	0,000		0,000		0.092	

MATERIALS & SAFETY - R&D TR 32890 page 5 of 18 0,000 0,000 0.160 21 0.107 0,000 0,000 22 0.084 0,000 0,010 0.147 23 0.098 0,000 0,000 24 0.077 0,000 0,000 0.135 25 0.090 0,000 0,000 26 0.071 0,000 0,000 0.124 27 0.083 0,000 0,000 28 0.066 0,000 0,000 0.117 29 0.078 0,000 0,000 30 0.061 0,000 0,000 0.109 31 0.073 0,000 0,000 32 0.058 0,000 0,000 0.102 33 0.068 0,000 0,000 34 0.054 0,000 0,000 0.096 35 0.064 0,000 0,000 36 0.051 0,000 0,000 0.091 37 0.061 0,000 0,000 38 0.048 0,000 0.087 0,000 39 0.058 0,000 0,000 40 0.046 Note the higher limits for odd harmonics 21 and above are only allowable under certain conditions, if these higher limits are utilised please state the

exemption used as detailed in part 6.2.3.4 of BS EN 61000-3-2 in the box

below.

MATERIALS & SAFETY - R&D

TR 32890

Power Quality - Harmonics: These tests should be carried out as specified in

page 6 of 18

BS EN 61000-3-2. The chosen test should be undertaken with a fixed source of energy at two power levels a) between 45 and 55% and b) at 100% of Registered Capacity. The test requirements are specified in Annex A1 A.1.3.1 (Inverter connected) or Annex A2 A.2.3.1 (Synchronous). Micro-generator tested to BS EN 61000-3-2 Phase 2 Micro-generator rating per 3.33 kW phase (rpp) Harmonic At 45-55% of 100% of Registered Registered Capacity Capacity Measured Measured Higher limit Limit Value MV Value MV in BS for odd in Amps in Amps ΕN harmonics 61000-21 and 3-2 in above Amps 0,010 0,010 1.080 2 0,000 0,000 2.300 3 0,000 0,000 0.430 4 0,010 0,010 1.140 5 0,000 0,000 0.300 6 0,010 0,010 0.770 7 0,000 0.230 0,000 8 0,010 0,000 0.400 9 0,000 0,000 0.184 10 0,020 0,030 0.330 11 0,000 0,010 0.153 12 0,020 0.210 0,010 13 0,010 0,010 0.131 14 0,020 0,020 0.150 15 0,010 0,020 0.115 16 0,100 0,020 0.132 17 0,010 0,010 0.102 18 0,010 0,030 0.118 19 0,000 0,000 0.092 20

MATERIALS	& SAFETY - R	&D	TR 32890		page 7 of 18	3
21	0,000		0,010	0.107	0.160	

22	0,000	0,000		
22			0.084	
23	0,000	0,010	0.098	0.147
24	0,000	0,000	0.077	
25	0,000	0,010	0.090	0.135
26	0,000	0,000	0.071	
27	0,000	0,000	0.083	0.124
28	0,000	0,000	0.066	
29	0,000	0,000	0.078	0.117
30	0,000	0,000	0.061	
31	0,000	0,000	0.073	0.109
32	0,000	0,000	0.058	
33	0,000	0,000	0.068	0.102
34	0,000	0,000	0.054	
35	0,000	0,000	0.064	0.096
36	0,000	0,000	0.051	
37	0,000	0,000	0.061	0.091
38	0,000	0,000	0.048	
39	0,000	0,000	0.058	0.087
40	0,000	0,000	0.046	

Note the higher limits for odd harmonics 21 and above are only allowable under certain conditions, if these higher limits are utilised please state the exemption used as detailed in part 6.2.3.4 of BS EN 61000-3-2 in the box below.

MATERIALS & SAFETY - R&D

TR 32890

page 8 of 18

Power Quality – Harmonics: These tests should be carried out as specified in BS EN 61000-3-2. The chosen test should be undertaken with a fixed source of energy at two power levels a) between 45 and 55% and b) at 100% of **Registered Capacity**. The test requirements are specified in Annex A1 A.1.3.1 (**Inverter** connected) or Annex A2 A.2.3.1 (Synchronous).

(Synchror	nous).			1 04000 0 0 DI		
			tested to BS EN		ase 3	
	nerator rating pe		3,33	kW		
Harmonic	Harmonic At 45-55% of Registered Capacity			Registered acity		
	Measured Value MV in Amps		Measured Value MV in Amps		Limit in BS EN 61000- 3-2 in Amps	Higher limit for odd harmonics 21 and above
2	0,010		0,010		1.080	
3	0,000		0,000		2.300	
4	0,000		0,000		0.430	
5	0,010		0,010		1.140	
6	0,000		0,000		0.300	
7	0,000		0,000		0.770	
8	0,000		0,000		0.230	
9	0,000		0,010		0.400	
10	0,000		0,000		0.184	
11	0,020		0,040		0.330	
12	0,000		0,000		0.153	
13	0,020		0,050		0.210	
14	0,010		0,010		0.131	
15	0,020		0,020		0.150	
16	0,010		0,010		0.115	
17	0,030		0,070		0.132	
18	0,010		0,010		0.102	
19	0,010		0,020		0.118	
20	0,000		0,000		0.092	

MATERIAL	_S & SAFETY -	- R&D	TR 32890)		page 9 of 18	
21	0,000		0,010		0.107	0.160	

MATERIALS & SAFETY - R&D

TR 32890

page 10 of 18

	0,000	0,000		
22			0.084	
23	0,000	0,010	0.000	0.147
	0,000	0,000	0.098	
24			0.077	
25	0,000	0,010	0.090	0.135
26	0,000	0,000	0.071	
27	0,000	0,000		0.124
	0,000	0,000	0.083	
28	0,000	0,000	0.066	
29	0,000	0,000		0.117
	0,000	0,000	0.078	
30	0,000	0,000	0.061	
31	0,000	0,000		0.109
	0.000	0.000	0.073	
32	0,000	0,000	0.058	
33	0,000	0,000		0.102
	0.000	0.000	0.068	
34	0,000	0,000	0.054	
35	0,000	0,000	0.001	0.096
30			0.064	
36	0,000	0,000	0.051	
27	0,000	0,000	0.001	0.091
37			0.061	
38	0,000	0,000	0.048	
39	0,000	0,000	0.058	0.087
40	0,000	0,000	0.046	
Nata tha	hiadaan linaita fan	add barmanias 21 and above are only allow		

Note the higher limits for odd harmonics 21 and above are only allowable under certain conditions, if these higher limits are utilised please state the exemption used as detailed in part 6.2.3.4 of BS EN 61000-3-2 in the box below.

MATERIALS & SAFETY - R&D

TR 32890

page 11 of 18

Power Quality – Voltage fluctuations and Flicker: These tests should be undertaken in accordance with EREC G98 Annex A1 A.1.3.3 (**Inverter** connected) or Annex A2 A.2.3.3 (Synchronous).

The standard test impedance is $0.4~\Omega$ for a single phase **Micro-generating Plant** (and for a two phase unit in a three phase system) and $0.24~\Omega$ for a three phase **Micro-generating Plant** (and for a two phase unit in a split phase system). Please ensure that both test and standard impedance are completed on this form. If the test impedance (or the measured impedance) is different to the standard impedance, it must be normalised to the standard impedance as follows (where the Power Factor of the generation output is $0.98~\mathrm{or}$ above):

d max normalised value = (Standard impedance / Measured impedance) x Measured value.

Where the **Power Factor** of the output is under 0.98 then the X to R ratio of the test impedance should be close to that of the standard impedance.

The stopping test should be a trip from full load operation.

The duration of these tests needs to comply with the particular requirements set out in the testing notes for the technology under test.

The test date and location must be declared.

Test start date	28.02	2019	9		Test end 26.03.2019 date								
Test location	Upper A	ustria,	a, Thalheim, Fronius laboratory										
	Startir	ng			S	topp	ing			Rui	nning		
	d(max)	d(c)		d(t)	d(max)	d(c))	d(t)	Pst		Plt 2	2 hours
Measured Values at test	0.97%	2,18	%	0	0.	97%	2.18	3%	0	0.26	55	0.26	62
impedance Normalised to standard impedance	0.97%	2,18	%	0	0.	97%	2.18	3%	0	0.26	55	0.20	62
Normalised to required maximum impedance	0.97%	2,18	%	0	0.	97%	2.18	3%	0	0.26	55	0.20	62
Limits set under BS EN 61000-3-11	4%	3.3%	, D	3.3%	4%	%	3.39	%	3.3%	1.0		0.6	5
Test Impedance	R		0.2	24		Ω			X		0.15		Ω
Standard Impedance	R		0.2	24 * 1^		Ω			Х		0.15 * 0.25^		Ω
Maximum Impedance	R		0.2			Ω			Х		0.25		Ω

^{*} Applies to three phase and split single phase **Micro-generators**. Delete as appropriate.

[^] Applies to single phase **Micro-generators** and **Micro-generators** using two phases on a three phase system. Delete as appropriate.

MATERIALS & SAFETY - R&D

TR 32890

page 12 of 18

Power quality – DC injection: This test should be carried out in accordance with A 1.3.4 as applicable.

The % **DC** injection ("as % of rated AC current" below) is calculated as follows:

% **DC** injection = Recorded **DC** value in Amps / base current

where the base current is the **Registered Capacity** (W) / 230 V. The % **DC** injection should not be greater than 0.25%.

3				
Test power level	20%	50%	75%	100%
Recorded DC value in Amps	0.023	0.022	0.029	0.036
as % of rated AC current	0.05	0.05	0.06	0.08
Limit	0.25%	0.25%	0.25%	0.25%

Power Quality – Power factor: This test shall be carried out in accordance with A.1.3.2 and A.2.3.2 at three voltage levels and at **Registered Capacity** and the measured **Power Factor** must be greater than 0.95 to pass. Voltage to be maintained within ±1.5% of the stated level during the test.

_	216.2 V	230 V	253 V
Measured value	1.000	1.000	1.000
Power Factor Limit	>0.95	>0.95	>0.95

Protection – Frequency tests: These tests should be carried out in accordance with Annex A1 A.1.2.3 (**Inverter** connected) or Annex A2 A.2.2.3 (Synchronous). For trip tests, frequency and time delay should be stated. For "no trip tests", "no trip" can be stated.

time delay should be stated. For no trip tests, no trip can be stated.								
Function	Setting		Trip test		"No trip tests"			
	Frequency	Time delay	Frequency	Time delay	Frequency /time	Confirm no trip		
U/F stage 1	47.5Hz	20s	47.50Hz	20.187s	47.7 Hz 30 s	No trip occurred		
U/F stage 2	47Hz	0.5s	47.00Hz	0.573s	47.2 Hz 19.5 s	No trip occurred		
					46.8 Hz 0.45 s	No trip occurred		
O/F stage 1	52Hz	0.5s	52.015Hz	0.582s	51.8 Hz 120.0 s	No trip occurred		
					52.2 Hz 0.45 s	No trip occurred		

Note. For frequency trip tests the frequency required to trip is the setting \pm 0.1 Hz. In order to measure the time delay a larger deviation than the minimum required to operate the projection can be used. The "No trip tests" need to be carried out at the setting \pm 0.2 Hz and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

MATERIALS & SAFETY - R&D

TR 32890

page 13 of 18

Protection – Voltage tests: These tests should be carried out in accordance with Annex A1 A.1.2.2 (**Inverter** connected) or Annex A2 A.2.2.2 (Synchronous). For trip tests, voltage and time delay should be stated. For "no trip tests", "no trip" can be stated.

	Phase 1							
Function	Setting		Trip test		"No trip tests	,,		
	Voltage	Time delay	Voltage	Time delay	Voltage /time	Confirm no trip		
U/V	184V	2.5s	184.1V	2.583	188 V 5.0 s	No trip occurred		
					180 V 2.45 s	No trip occurred		
O/V stage 1	262.2V	1.0s	263.4V	1.021s	258.2 V 5.0 s	No trip occurred		
O/V stage 2	273.7V	0.5s	274.6V	0.528s	269.7 V 0.95 s	No trip occurred		
		277.7 V 0.45 s	No trip occurred					

Note for Voltage tests the Voltage required to trip is the setting ±3.45 V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ±4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

Protection – Voltage tests: These tests should be carried out in accordance with Annex A1 A.1.2.2 (**Inverter** connected) or Annex A2 A.2.2.2 (Synchronous). For trip tests, voltage and time delay should be stated. For "no trip tests", "no trip" can be stated.

	Phase 2							
Function	Setting		Trip test		"No trip tes	ts"		
	Voltage	Time delay	Voltage	Time delay	Voltage /time	Confirm no trip		
U/V	184V	2.5s	184.2V	2.588	188 V 5.0 s	No trip occurred		
					180 V 2.45 s	No trip occurred		
O/V stage 1	262.2V	1.0s	263.3V	1.024s	258.2 V 5.0 s	No trip occurred		
O/V stage 2	273.7V	0.5s	275.1V	0.526s	269.7 V 0.95 s	No trip occurred		
					277.7 V 0.45 s	No trip occurred		

Note for Voltage tests the Voltage required to trip is the setting ± 3.45 V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ± 4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

MATERIALS & SAFETY - R&D

TR 32890

page 14 of 18

Protection – Voltage tests: These tests should be carried out in accordance with Annex A1 A.1.2.2 (**Inverter** connected) or Annex A2 A.2.2.2 (Synchronous). For trip tests, voltage and time delay should be stated. For "no trip tests", "no trip" can be stated.

			Phase 3			
Function	Setting		Trip test		"No trip tes	ts"
	Voltage	Time delay	Voltage	Time delay	Voltage /time	Confirm no trip
U/V	184V	2.5s	184.2V	2.588	188 V 5.0 s	No trip occurred
			•	·	180 V 2.45 s	No trip occurred
O/V stage 1	262.2V	1.0s	263.3V	1.024s	258.2 V 5.0 s	No trip occurred
O/V stage 2	273.7V	0.5s	275.1V	0.526s	269.7 V 0.95 s	No trip occurred
	No trip occurred					

Note for Voltage tests the Voltage required to trip is the setting ±3.45 V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ±4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

Protection – Loss of Mains test: For PV Inverters shall be tested in accordance with BS EN
62116. Other Micro-generators should be tested in accordance with A.2.2.4 at 10%, 55% and
100% of rated power.

To be carried out at three output power levels with a tolerance of plus or minus 5% in Test Power levels. 9								
Test Power	10%	55%	100%	10%	55%	100%		
Balancing load on islanded network	95% of Registered Capacity	95% of Registered Capacity	95% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity		
Trip time. Limit is 0.5 seconds								

For Multi phase **Micro-generators** confirm that the device shuts down correctly after the removal of a single fuse as well as operation of all phases.

removal of a single fuse as well as operation of all phases.							
Test Power	10%	55%	100%	10%	55%	100%	
Balancing load on	95% of	95% of	95% of	105% of	105% of	105% of	
islanded network	Registered	Registered	Registered	Registered	Registered	Registered	
	Capacity	Capacity	Capacity	Capacity	Capacity	Capacity	
Trip time. Ph1							
fuse removed							
Test Power	10%	55%	100%	10%	55%	100%	
Balancing load on	95% of	95% of	95% of	105% of	105% of	105% of	
islanded network	Registered	Registered	Registered	Registered	Registered	Registered	
i isiailaca Helwork			i togiotoi ou	rtegisterea	rtegistered	registered	
isianaca network	Capacity	Capacity	Capacity	Capacity	Capacity	Capacity	
Trip time. Ph2			-	_	•	•	
			-	_	•	•	
Trip time. Ph2			-	_	•	•	
Trip time. Ph2 fuse removed Test Power	Capacity 	Capacity 	Capacity 	Capacity 	Capacity 	Capacity 	
Trip time. Ph2 fuse removed Test Power Balancing load on	Capacity 10%	Capacity 55%	Capacity 100%	Capacity 10%	Capacity 55%	Capacity 100%	
Trip time. Ph2 fuse removed Test Power	10% 95% of	55% 95% of	100% 95% of	10% of	55% of	100% of	

MATERIALS & SAFETY - R&D TR 32890 page 15 of 18 fuse removed Note for technologies which have a substantial shut down time this can be added to the 0.5 s in establishing that the trip occurred in less than 0.5 s. Maximum shut down time could therefore be up to 1.0 s for these technologies. Indicate additional shut down time included in above results. Additional comments: For Inverters tested to BS EN 62116 the following sub set of tests should be recorded in the following table. Test Power and 33% 66% 100% 33% 66% 100% imbalance -5% Q -5% Q -5% P +5% Q +5% Q +5% P Test 22 Test 12 Test 5 Test 31 Test 21 Test 10 Trip Time. Limit is 192 ms 176 ms 220 ms 208 ms 180 ms 220 ms 0.5s

Protection - Frequency change, Vector Shift Stability test: This test should be carried out in accordance with EREC G98 Annex A1 A.1.2.6 (Inverter connected) or Annex A2 A.2.2.6 (Synchronous). Confirmation is required that the Micro-generating Plant does not trip under positive / negative vector shift. Start Change Confirm no trip Frequency Positive Vector Shift 49.0Hz +50 degrees No trip occurred Negative Vector Shift 50.0Hz -50 degrees No trip occurred

Protection - Frequency change, RoCoF Stability test: The requirement is specified in section 11.3, test procedure in Annex A.1.2.6 (Inverter connected) or Annex A2 A.2.2.6 (Synchronous). Confirmation is required that the Micro-generating Plant does not trip for the duration of the ramp up and ramp down test. Test Duration Ramp range Test frequency ramp: Confirm no trip 49.0 Hz to 51.0Hz +0.95 Hzs⁻¹ 2.1 s No trip occurred 51.0 Hz to 49.0Hz -0.95 Hzs⁻¹ 2.1 s No trip occurred

Limited Frequency Sensitive Mode - Overfrequency test: This test should be carried out in accordance with A.1.2.8. The test should be carried out using the specific threshold frequency of 50.4 Hz and Droop of 10%. The measurement tolerances are contained in A.1.2.8. Test sequence at Measured Frequency **Primary Power Source** Active Registered Capacity >80% **Active Power** Power Output Gradient Step a) 50.00 Hz ±0.01 Hz 50.00Hz 10026W Step b) 50.45 Hz ±0.05 Hz 50.45Hz 9925W Step c) 50.70 Hz ±0.10 Hz 50.70Hz 9423W 10.2kW 20%/Hz Step d) 51.15 Hz ±0.05 Hz 51.15Hz 8538W Step e) 50.70 Hz ±0.10 Hz 50.70Hz 9423W 9925W 50.45Hz Step f) 50.45 Hz ±0.05 Hz

MATERIALS & SAFETY - R&D

TR 32890

page 16 of 18

Step g) 50.00 Hz ±0.01 Hz		50.00Hz		
Step g) 50.00 Hz ±0.01 Hz	10017W	30.00HZ		
Test sequence at	Measured	Frequency	Primary Power Source	Active
Registered Capacity 40% -	Active Power			Power
60%	Output			Gradient
Step a) 50.00 Hz ±0.01 Hz	5036W	50.00Hz		
Step b) 50.45 Hz ±0.05 Hz	4938W	50.45Hz		
Step c) 50.70 Hz ±0.10 Hz	4435W	50.70Hz		
Step d) 51.15 Hz ±0.05 Hz	3547W	51.15Hz	5.1kW	20%/Hz
Step e) 50.70 Hz ±0.10 Hz	4435W	50.70Hz		
Step f) 50.45 Hz ±0.05 Hz	4938W	50.45Hz		
Step g) 50.00 Hz ±0.01 Hz	5039W	50.00Hz		

Power output with falling frequency test: This test should be carried out in accordance with A.1.2.7.								
Measured Active Power Output	Frequency	Primary power source						
10161W	50Hz	10.5kW						
10165W	49.55Hz	10.5kW						
10160W	47.55Hz	10.5kW						
	Measured Active Power Output 10161W 10165W	Measured Active Power Output 10161W 50Hz 10165W 49.55Hz						

Re-connection timer.

Test should prove that the reconnection sequence starts after a minimum delay of 20 s for restoration of voltage and frequency to within the stage 1 settings of Table 2. Both the time delay setting and the measured delay should be provided in this form; both should be greater than 20 s to pass. Confirmation should be provided that the Micro-generating Plant does not reconnect at the voltage and frequency settings below; a statement of "no reconnection" can be made.

Time delay	Measured		Checks on no reconnection when voltage or frequency is				
setting	delay		brought to just outside stage 1 limits of table 2.				
20.0s	57s		At 266.2V	At 180.0V	At 47.4Hz	At 52.1Hz	
Confirmation that the Micro-generator			No re-	No re-	No re-	No re-	
does not re-co	nnect.		connect	connect	connect	connect	
			occurred	occurred	occurred	occurred	

MATERIALS & SAFETY - R&D

TR 32890

page 17 of 18

Fault level contribution: These tests shall be carried out in accordance with EREC G98 Annex							
A1 A.1.3.5 (Inverter connected) and Annex A2 A.2.3.4 (Synchronous).							
Please complete each entry			ibution is zero).			
For machines with electro-mag	netic output		For Inverter	output			
Parameter	Symbol	Value	Time after fault	Volts	Amps		
Peak Short Circuit current	i_p		20ms	47,22	9,98		
Initial Value of aperiodic current	Α		100ms	47,22	9,98		
Initial symmetrical short- circuit current*	I _k		250ms	27,66	0,10		
Decaying (aperiodic) component of short circuit current*	i _{DC}		500ms	27,66	0,09		
Reactance/Resistance Ratio of source*	X/ _R		Time to trip	0,03	In seconds		

For rotating machines and linear piston machines the test should produce a 0 s - 2 s plot of the short circuit current as seen at the **Micro-generator** terminals.

^{*} Values for these parameters should be provided where the short circuit duration is sufficiently long to enable interpolation of the plot

Logic Interface (input port)	
Confirm that an input port is provided and can be used to reduce the Active Power output to zero	Yes
Provide high level description of logic interface, e.g. details in 9.4.3 such as AC or DC signal (the additional comments box below can be used)	Yes
The Symo inverter (Power Generating Module) has a S0 connector on the RECERBO print (Display print) which can be used for shutdown and as a logic interface to switch of the inverter. This S0 connector interrupts the inverter feeding energy into the grid if the trigger device (switch) has been activated.	
Self-Monitoring solid state switching: No specified test requirements. Refer to EREC G98 Annex A1 A.1.3.6 (Inverter connected).	NA
It has been verified that in the event of the solid state switching device failing to disconnect the Micro-generator , the voltage on the output side of the switching device is reduced to a value below 50 V within 0.5 s.	
Note: Unit do not provide solid state switching relays. In case the semiconductor bridge is switched off, then the voltage on the output drops to 0. In this case the relays on the output will also open (functional safety of the internal automatic disconnection device according to VDE 0126-1-1).	
Cyber security	
Confirm that the Manufacturer or Installer of the Micro-generator has provided a statement describing how the Micro-generator has been designed to comply with cyber security requirements, as detailed in 9.7.	Yes
Additional comments	l

MATERIALS & SAFETY - R&D	TR 32890	page 18 of 18